From dislocation motion to an additive velocity gradient decomposition, and some simple models of dislocation dynamics

نویسندگان

  • Amit ACHARYA
  • Xiaohan ZHANG
  • Luc Tartar
چکیده

A mathematical theory of time-dependent dislocation mechanics of unrestricted geometric and material nonlinearity is reviewed. Within a “small deformation” setting, a suite of simplified and interesting models consisting of a nonlocal Ginzburg Landau equation, a nonlocal level set equation, and a nonlocal generalized Burgers equation is derived. In the finite deformation setting, it is shown that an additive decomposition of the total velocity gradient into elastic and plastic parts emerges naturally from a micromechanical starting point that involves no notion of plastic deformation but only the elastic distortion, material velocity, dislocation density and the dislocation velocity. Moreover, a plastic spin tensor emerges naturally as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From dislocation motion to an additive velocity gradient decomposition , and some simple models of dislocation dynamics ∗ Amit

A mathematical theory of time-dependent dislocation mechanics of unrestricted geometric and material nonlinearity is reviewed. Within a ‘small deformation’ setting, a suite of simplified, but interesting, models, namely a nonlocal Ginzburg Landau, a nonlocal level set, and a nonlocal generalized Burgers equation are derived. In the finite deformation setting, it is shown that an additive decomp...

متن کامل

A lattice-dynamics model of the interaction of a dislocation with point defects

2014 We consider a lattice dynamics model of a straight screw dislocation moving in a simple cubic lattice with nearest-neighbour « snapping bonds ». The effect on the lattice of the dislocation motion is described by a dynamic source-force, or Kanzaki-force, and the lattice response by the phonon Green’s function. A random array of isotopic substitutional point defects is introduced, and the a...

متن کامل

Dislocation climb models from atomistic scheme to dislocation dynamics

We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment k...

متن کامل

Stress-driven migration of simple low-angle mixed grain boundaries

We investigated the stress-induced migration of a class of simple low-angle mixed grain boundaries (LAMGBs) using a combination of discrete dislocation dynamics simulations and analytical arguments. The migration of LAMGBs under an externally applied stress can occur by dislocation glide, and was observed to be coupled to the motion parallel to the boundary plane, i.e. tangential motion. Both t...

متن کامل

Kinetic Monte Carlo method for dislocation migration in the presence of solute

We present a kinetic Monte Carlo method for simulating dislocation motion in alloys within the framework of the kink model. The model considers the glide of a dislocation in a static, three-dimensional solute atom atmosphere. It includes both a description of the short-range interaction between a dislocation core and the solute and long-range solute-dislocation interactions arising from the int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015